254 research outputs found

    The Application of FAST-NMR for the Identification of Novel Drug Discovery Targets

    Get PDF
    The continued success of genome sequencing projects has resulted in a wealth of information, but 40-50% of identified genes correspond to hypothetical proteins or proteins of unknown function. The Functional Annotation Screening Technology by NMR (FAST-NMR) screen was developed to assign a biological function for these unannotated proteins with a structure solved by the Protein Structure Initiative. FAST-NMR is based on the premise that a biological function can be described by a similarity in binding sites and ligand interactions with proteins of known function. The resulting co-structure and functional assignment may provide a starting point for a drug discovery effort

    A Correlation between Protein Function and Ligand Binding Profiles

    Get PDF
    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes

    Headstrong intervention for pediatric migraine headache: a randomized clinical trial

    Get PDF
    Background The purpose of this study was to evaluate the efficacy of a self-guided CD-ROM program (“Headstrong”) containing cognitive-behavioral self-management strategies versus an educational CD-ROM program for treating headaches, headache-related disability, and quality of life. Methods Participants were 35 children ages 7–12 years with migraine recruited from one university medical center and two children’s hospital headache clinics. Participants were randomly assigned to complete the Headstrong or educational control CD-ROM program over a 4-week period. Data on headache frequency, duration, and severity, migraine-related disability, and quality of life (QOL) were obtained at baseline, post-intervention, and 3-months post-intervention. Results At post-intervention, Headstrong resulted in lower severity (on a 10-point scale) than the control group by child report (5.06 ± 1.50 SD vs. 6.25 ± 1.92 SD, p = 0.03, ES = 0.7). At 3-months post-intervention, parents reported less migraine-related disability (on the PedMIDAS) in the Headstrong group compared to the control group (1.36 ± 2.06 SD vs. 5.18 ± 6.40 SD; p = 0.04, ES = 0.8). There were no other group differences at post treatment or at 3-months post-intervention. Conclusions When compared to an educational control, Headstrong resulted in lower pain severity at post-treatment and less migraine-related disability at 3-months post-intervention, by child and parent report respectively. Headache frequency and quality of life did not change more for Headstrong versus control. Additional research is needed on the Headstrong Program to increase its efficacy and to test it with a larger sample recruited from multiple centers simultaneously.The study reported in this paper was funded by a grant from the National Institutes of Health, (National Institute of Neurological Disorders and Stroke), R01-NS046641, Michael Rapoff, Principal Investigator

    Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion

    Get PDF
    Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance

    Two contemporaneous mitogenomes from terminal Pleistocene burials in eastern Beringia

    Get PDF
    Pleistocene residential sites with multiple contemporaneous human burials are extremely rare in the Americas. We report mitochondrial genomic variation in the first multiple mitochondrial genomes from a single prehistoric population: two infant burials (USR1 and USR2) from a common interment at the Upward Sun River Site in central Alaska dating to ~11,500 calendar years before present (cal B.P.). Using a targeted capture method and next-generation sequencing we determined that the USR1 infant possessed variants that define mitochondrial lineage C1b, while the USR2 genome falls at the root of lineage B2, allowing us to refine younger coalescence age estimates for these two clades. C1b and B2 are rare to absent in modern populations of Northern North America. Documentation of these lineages at this location in the Late Pleistocene provides evidence for the extent of mitochondrial diversity in early Beringian populations, which supports the expectations of the Beringian Standstill Model

    Evaluation with in vivo optical coherence tomography and histology of the vascular effects of the everolimus-eluting bioresorbable vascular scaffold at two years following implantation in a healthy porcine coronary artery model: implications of pilot results for future pre-clinical studies

    Get PDF
    To quantify with in vivo OCT and histology, the device/vessel interaction after implantation of the bioresorbable vascular scaffold (BVS). We evaluated the area and thickness of the strut voids previously occupied by the polymeric struts, and the neointimal hyperplasia (NIH) area covering the endoluminal surface of the strut voids (NIHEV), as well as the NIH area occupying the space between the strut voids (NIHBV), in healthy porcine coronary arteries at 2, 3 and 4 years after implantation of the device. Twenty-two polymeric BVS were implanted in the coronary arteries of 11 healthy Yucatan minipigs that underwent OCT at 2, 3 and 4 years after implantation, immediately followed by euthanasia. The areas and thicknesses of 60 corresponding strut voids previously occupied by the polymeric struts and the size of 60 corresponding NIHEV and 49 NIHBV were evaluated with both OCT and histology by 2 independent observers, using a single quantitative analysis software for both techniques. At 3 and 4 years after implantation, the strut voids were no longer detectable by OCT or histology due to complete polymer resorption. However, analysis performed at 2 years still provided clear delineation of these structures, by both techniques. The median [ranges] areas of these strut voids were 0.04 [0.03–0.16] and 0.02 [0.01–0.07] mm2 by histology and OCT, respectively. The mean (±SD) thickness by histology and OCT was 220 ± 40 and 120 ± 20 Όm, respectively. The median [ranges] NIHEV by histology and OCT was 0.07 [0.04–0.20] and 0.03 [0.01–0.08] mm2, while the mean (±SD) NIHBV by histology and OCT was 0.13 ± 0.07 and 0.10 ± 0.06 mm2. Our study indicates that in vivo OCT of the BVS provides correlated measurements of the same order of magnitude as histomorphometry, and is reproducible for the evaluation of certain vascular and device-related characteristics. However, histology systematically gives larger values for all the measured structures compared to OCT, at 2 years post implantation

    Integrating tropical research into biology education is urgently needed

    Get PDF
    Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperatezone lens. Integrating tropical research into biology education is urgently needed to tackle these issues. The tropics are engines of Earth systems that regulate global cycles of carbon and water, and are thus critical for management of greenhouse gases. Compared with higher-latitude areas, tropical regions contain a greater diversity of biomes, organisms, and complexity of biological interactions. The tropics house the majority of the world’s human population and provide important global commodities from species that originated there: coffee, chocolate, palm oil, and species that yield the cancer drugs vincristine and vinblastine. Tropical regions, especially biodiversity hotspots, harbor zoonoses, thereby having an important role in emerging infectious diseases amidst the complex interactions of global environmental change and wildlife migration [1]. These well-known roles are oversimplified, but serve to highlight the global biological importance of tropical systems. Despite the importance of tropical regions, biology curricula worldwide generally lack coverage of tropical research. Given logistical, economic, or other barriers, it is difficult for undergraduate biology instructors to provide their students with field-based experience in tropical biology research in a diverse range of settings, an issue exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. Even in the tropics, field-based experience may be limited to home regions. When tropical biology is introduced in curricula, it is often through a temperate- zone lens that does not do justice to the distinct ecosystems, sociopolitical histories, and conservation issues that exist across tropical countries and regions [2]. The tropics are often caricatured as distant locations known for their remarkable biodiversity, complicated species interactions, and unchecked deforestation. This presentation, often originating from a colonial and culturally biased perspective, may fail to highlight the role of tropical ecosystems in global environmental and social challenges that accompany rising temperatures, worldwide biodiversity loss, zoonotic pandemics, and the environmental costs of ensuring food, water, and other ecosystem services for humans [3]

    Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function.</p> <p>Findings</p> <p>We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and CÎČ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated.</p> <p>Conclusions</p> <p>CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≄ 30% infer a functional similarity. Software URL: <url>http://cpass.unl.edu</url>.</p

    Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations

    Get PDF
    The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.Susan WhiteheadHillel and Liliana Bachrac
    • 

    corecore